
International Journal of Education and Development using Information and Communication Technology
(IJEDICT), 2017, Vol. 13, Issue 2, pp. 166-184

Computational algorithmization: Limitations in problem solving skills in
computational sciences majors at University of Oriente

Antonio S. Castillo

General Teaching Hospital “Dr. Juan Bruno Zayas Alfonso”, Cuba

Isabel A. Berenguer, Alexander G. Sánchez, and Tomás R. R. Álvarez
University of Oriente, Cuba

ABSTRACT

This paper analyzes the results of a diagnostic study carried out with second year students of the
computational sciences majors at University of Oriente, Cuba, to determine the limitations that
they present in computational algorithmization. An exploratory research was developed using
quantitative and qualitative methods. The results allowed verifying insufficiencies that have their
base in the processes of interpretation and understanding of the problematic situations and in the
insufficient design of algorithms, using pseudocodes, before implementing the solutions in a
programming language.

Keywords: Computer programming; computational algorithmization; problem solving.

INTRODUCTION

The process of computerization of society has gained a great boom in recent times by
encouraging the application of Information and Communication Technologies (ICT) to different
spheres and sectors of society, in order to achieve greater efficiency through the optimization of
resources and the increase of productivity in these areas (Salgado, Alonso & Gorina 2014). For
developing countries, such as Cuba, this purpose is a challenge that has led them to identify the
need to introduce ICT into the social practice and to achieve an informatic culture that facilitates
sustainable development. However, to carry out this purpose requires competent professionals,
capable of acquiring that culture and developing it from the ways of acting in their profession
(Fergusson et al. 2015).

This requirement has resulted in Cuba have included computer courses in the curriculum of
numerous university major, such as bachelor degrees in Mathematics, Physics, Biology, among
others, and Mechanical, Biomedical and Electrical engineering. They have also created careers
whose object of study is more specific and related to the informatic culture, such as, Computer
Science, Computer Engineering, Information Systems, Information Technology and Software
Engineering, called computational sciences (ACM 2005).

Consequently, it is hoped that the professionals who graduate from all these careers have
appropriated the main scientific and technical advances related to informatic. In addition, in the
case of the computationals sciences majors, they must have developed skills that allow them to
design, write, debug and maintain the source code of computer programs; code that must be
written in a specific language and often requires knowledge of various disciplines, specialized
algorithms and formal logic; from which these professionals can create programs that exhibit the
desired behavior (Salgado, Gorina & Alonso 2013). A valid strategy in this direction is to begin to
teach programming using the algorithms as schematic resources through pseudocode as the

Limitations in problem solving skills in computational sciences majors 167

main language, to represent the model of the resolution of a problem (Arellano et al. 2012; Blanco,
Salgado & Alonso 2016).

Considering all of the above, this article aims to determine the shortcomings that are manifested
in the teaching-learning process of the resolving computational programming problems and its
dynamics of algorithmization in the majors of computational sciences of the University of Oriente,
Cuba: Bachelor´s degree in Computing Science, Engineering in Telecommunications and
Electronics, Informatics Engineering and Automatic Engineering.

LITERATURE REVIEW

Teaching-learning process of the resolving computational programming problems

The teaching - learning process of resolving computational programming problems has been
approached by numerous researchers, who have obtained important results in the search for a
way to teach to program so that the student is able to create his own strategies consciously. Thus,
authors such as Arellano et al. (2014) and Ma et al. (2011) assert that the fragility of knowledge in
programming is due to the lack of a computer mental model that serves as the basis for creating
viable algorithms. But although the conception of this model could be considered an alternative to
favor the activity of programming, this is not enough to create efficient programs, since other
mathematical, logical and computational knowledge must be incorporated, allowing an integrative
perspective to address it.

On the other hand, the venezuelan researchers Torres and Torres (2016), have determined that
when students solve problems of programming, they manifest lack of abstraction, few
mathematical knowledge and deficiencies in the process of reading and interpretation of
problems. In addition to this the student is generally focused on the language tool to be used,
rather than in the domain of computational logic. Similarly, the mexican researchers Sánchez,
Urías and Gutiérrez (2015), affirm that an important factor that hinders the learning of
programming is the demands of language syntax, because many times students after they have
understood the concepts, try to execute the programs, and by a syntactic error does not work,
which causes them frustration and causes them to become discouraged. These authors suggest
teaching programming using algorithms in a previous course and then move on to using language.

In the same way, researchers Adu-Manu, Kingsley and Owusu (2013) refer that in programming
courses students usually present problems to understand and interpret the problems they are
trying to solve, specifying that, in general the learning of programming language is prioritized to
the detriment of algorithmic design skills.

Meanwhile, the French researchers Guibert, Guittet and Girard (2006) found difficulties in the
conception of computational programs, concluding that learning of the programming cannot be
reduced to learn the syntax of a language, but the student must appropriate a correct algorithmic
model of how the programs are developed and executed. These authors, rightly, recognize that
the didactics of programming must be based on the processes of analysis, interpretation and
algorithmic conception.

Similarly, Whitfield et al. (2007) of the School of Computer Science, Liverpool Hope University
argue that the resolution of a computational problem requires skills such as the identification of
subproblems, recognition of relationships, situations and models that allow development an
algorithm for the solution and the translation of the same to the executable code. With that which
refers to the need to enhance the process of computational algorithmization, this position is
assumed in the present investigation.

168 IJEDICT

However, all these shortcomings in the resolution of programming problems have also been
observed in the computational sciences majors of cuban universities, identified in the study by
Salgado et al. (2013). Who made a diagnosis between the courses 2003-2004 to 2011-2012
taking as reference two majors: bachelor´s degree in Computing Science and Informatics
Engineering, both from the University of Oriente, Cuba. This study revealed the following
shortcomings:

• Limitations in the comprehension of the problematic situations that are posed to them and in
their respective modelling from the programming.

• Selection and inappropriate use of computational structures that do not allow the verification
and validation of the algorithms that are conceived and implemented.

• Inaccuracies in the computational solutions that are given to problematic situations, which do
not always satisfy the original requirements.

• Scarce skills in coding computational procedures in a variety of computer languages.

All of the aforementioned investigations, in one way or another, recognize that the teaching-
learning process of resolving computational programming problems, has at its center of its
difficulties the algorithmization. Taking into account these shortcomings, those that coincide with
the observations made by the authors of this paper in the computational sciences majors of the
University of Oriente, Cuba, is that the present investigation is developed.

METHODOLOGY

This exploratory study, on the current state of the teaching-learning process of resolving
computational programming problems and its dynamics of algorithmization, was essentially based
on two diagnostic tools: a survey to second year students of computational sciences majors at
University of Oriente and an interview with teachers who teach Programming for these majors. It
should be noted, that the results of the survey were expected to be favorable with respect to the
basic skills that should be present in the resolution of computational programming problems,
since the selected population was made up of students who had already taken the subject of
Programming.

In order to determine the type of sampling to be used in the survey, the homogeneity among the
programs of the Programming subject for the four computational sciences majors of the above
mentioned university was taken into account. More than 80% of the contents coincide in each
program (Salgado 2015). Consequently, each major was considered as a conglomerate
containing the characteristics of the variables to be studied, which allowed the use of a probability
sampling by two-stage clusters (Cochran 1980). However, if one wishes to have a certain level of
completeness of the information concerning the behavior of the process under study, it would be
very risky to consider only the results provided by the survey to students. Hence it was
considered convenient to carry out an interview to teachers who teach classes in computational
sciences majors.

Population and sample for the students’ survey

For the survey, the population consisted of 182 second year students of the four computational
sciences majors at University of Oriente, at the beginning of the 2012-2013 academic year. The
composition of the surveyed students was: 31 students of Informatics Engineering, 77 of
Engineering in Telecommunications and Electronics, 24 of the Bachelor´s degree in Computing

Limitations in problem solving skills in computational sciences majors 169

SURVEY TO SECOND YEAR STUDENTS OF COMPUTATIONAL SCIENCES MAJORS AT
UNIVERSITY OF ORIENTE, CUBA

Dear student:

The present survey is part of a study that aims to improve the teaching of the subject Programming. We
ask that you please read carefully the information requested and answer all questions truthfully, employing
the following categories:

1 2 3 4 5
Strongly disagree Disagree Neither agree nor

disagree Agree Strongly agree

Beforehand we extend our appreciation for your valuable contribution. Thank you so much.

Questionnaire

No AFFIRMATIONS 1 2 3 4 5
1 I read the problems again in my own words.

2 I do not check the solution to each problem.

3 I read the problem several times before trying to solve it.

4 I do not use graphics, tables, equations and functions to represent the
problem I am solving.

5 I distinguish the relevant information from the irrelevant one in each
problem before solving it.

6 I do not begin to solve the problem until I am sure that Ihave interpreted
clearly and precisely each of its elements and have an integrated vision of
them.

7 I explore different computational structures (for, if, then, while, among
others) before designing a solution algorithm for the problem.

8 To solve a problem, I design the program without taking into account a
logical order to concatenate the computational structures (for, if, then,
while, among others).

9 I estimate the final answer after conceiving a way to reach the solution of
the problem.

10 After finding the solution to the problem, I do not prove other data to
execute (run) the program.

11 After solving a problem, I reflect about the method or methods I used.

12 I do not design an algorithm before deploying it in a programming
language.

13 I use pseudocode to design the algorithm before implementing it in a
programming language.

14 When solving a problem, start to implement it in a programming language
without using pseudocodes.

15 Dominating the syntax or rules of a programming language is more
important than knowing algorithms design.

16 If a program complies with the syntax of a programming language and runs
properly, then it fulfills the purpose for which it was implemented.

Figure 1. Survey to second year students of computational sciences majors at University of
Oriente. Source: Created by the authors.

170 IJEDICT

Science and 50 of Automatic Engineering. However, taking into account the need to economize
resources in research, no information was extracted directly from each experimental unit, but it
was necessary to select a random sample of the population under study.

In the second stage, a probabilistic sample was chosen, based on a simple random sampling, in
each of the selected conglomerates, being made up of 18 undergraduate students in Computing
Science Bachelor (75% of the 24) and 23 of Informatics Engineering (74.19% of the 31), for a
total of 41 students to be surveyed.

The aim of the survey to the 41 students was to explore the teaching-learning process of
resolving computational programming problems and their dynamics of algorithmization, using the
operational variable «learning algorithmization for resolving computational programming
problems», which is defined as the appropriation and application of algorithmization contents to
the efficient and effective resolution of computational programming problems. This variable was
operationalized on the basis of the 16 indicators or items that made up the questionnaire applied
to students and shown in figure 1.

For the elaboration of the 16 items of the survey, affirmations and negations were used, in order
to reduce bias in the opinion of students, which is introduced by using a single type of item
(Bayona et al. 2005). Then, in order to unify the answers, it was worked on the transformation of
the negations presented in the even items (I-2, I-4, I-6, I-8, I-10, I-12, I-14 and I-16). So, all
resulting items were elaborated in an affirmative way to facilitate the data analysis of the final
information (see figure 1).

In order to calculate the confidence of the survey, the split-halves method was used (Hernández,
Fernández & Batista 2014), obtaining a correlation coefficient equal to 0.78. Therefore, the
confidence of the instrument is considered acceptable.

Information processing of the students’ survey

The answers are classified according to each of the 16 items previously declared, considering the
Likert scale (ordinal), with five levels of response, shown in figure 1. In addition, for the
information processing of the survey, four classes were structured considering the mean and the
classification thresholds (Gorina & Alonso 2012) those shown below:

Class A:

jC ∈ [1, 2) Very unfavorable zone.

Class B:
jC ∈ [2, 3) Unfavorable zone.

Class C:
jC ∈ [3, 4) Favorable zone.

Class D:
jC ∈ [4, 5] Very favorable zone.

Subsequently, the following estimates were used:

§ Overall criterion for a given item, which is expressed from the arithmetic mean of the scores

of item j (mean of column j):

mj

C
C

mj

i
ij

j

∑
== 1

Limitations in problem solving skills in computational sciences majors 171

§ Degree of student agreement for a given item, expressed as variance (2
jσ), the standard

deviation (jσ) or coefficient of variation (jv) of the scores obtained in the item j:

1

)(
1

2

2

−

−
=
∑
=

mj

CC
mj

i
jij

jσ

σ σj j= 2

j

j
j C
v

σ
=

It should be noted, that more attention was paid to the coefficient of variation (which is the standard
deviation expressed as one percent of the average) thus providing a measure of the magnitude of
the variation relative to the size of the quantity being measured. Therefore, the higher the value of vj,
the lower the degree of agreement of the m students related to item j. It was assumed as plausible
value for the cut-off point or threshold of vj, to accept an adequate agreement of the students in item
j, to value 0.25; which represents a quarter of vj (Martínez & Martínez 2008).

Population and sample for the teachers’ interview

The interview was designed in an unstructured and individual way and an interview guide was
used as instrument. This interview was conducted in person and recorded. In general, the
duration was 30 to 40 minutes. Twenty teachers were chosen who constitute 80% of those who
teach Programming in the four computational sciences majors at the Orient University. This
selection was based on: years of experience, teaching category and scientific degree. The
interview aimed to explore in the teaching-learning process of resolving computational
programming problems and their dynamics of algorithmization, for which the following three
indicators were taken into consideration:

• Moment of the programming process in which the greatest difficulties are present:

o Analysis and interpretation of the problem situation.

o Computational program elaboration.

o Execution and validation of the program.

o Interpretation of program results.

• Other aspects considered relevant for the teaching-learning process of resolving
computational programming problems.

• How you would like to be taught Programming?

Information processing of the teachers’ interview

Upon completion of the field work (transcriptions of the audio recordings and notes taken during
interviews) the content of the textual data was analyzed. The information collected was classified
according to the aspects foreseen in the guide and simple counts of similar responses, generated
with respect to the questions raised in the interviews, were made. Thus, a script was obtained
that allowed to develop analytical categories and theoretical explanations.

This structure was applied systematically to all transcripts, to allow encoding the interview data
according to their categories, so that the reorganized data could be analyzed. Simultaneously,
key comments were selected, which could later be used as textual quotations.

172 IJEDICT

The theoretical methods of analysis-synthesis and induction-deduction have been used in the
analytical process so far, and have been able to propose, order, describe and interpret the data
by means of concepts and reasoning, assessing and arriving at conclusions that will reveal the
main shortcomings that generated the research problem and its possible causes, some
expressed by the respondents and others obtained as a result of the interpretation and
construction of the researchers’ knowledge.

PRESENTATION OF THE RESULTS

Student survey results

A descriptive synthesis of the results obtained for the two sampled clusters (Bachelor's Degree in
Computing Science and Informatics Engineering) is presented in Tables 1 and 2 respectively,
which show that the results obtained, in general, are favorable, as we expected from these
students, who had passed the subject of Programming. However, a more detailed analysis of the
data shows that there are difficulties related to items (I-6, I-12, I-13, I-14, I-15 and I-16) that
respond directly to algorithmization in the teaching-learning process of resolving computational
programming problems.

Tables 1 and 2 present the data obtained for each of the 16 item after the survey to the 18
students of the Bachelor's Degree in Computing Science and the 23 of Informatics Engineering.
In addition, it is show the statistical measures that were considered to characterize the
generalized criterion and the level of concordance for each indicator of the survey.

Table 1: Students’ ratings of the Bachelor's Degree in Computing Science for each item of the

survey. Arithmetic mean of the students’ criteria and statistical dispersion measures to
evaluate the level of concordance by item. [Source: Created by the authors].

Item

 Stu

I-1 I-2 I-3 I-4 I-5 I-6 I-7 I-8 I-9 I-10 I-11 I-12 I-13 I-14 I-15 I-16

S-1 4 5 5 5 5 1 5 5 4 5 5 5 4 4 5 4

S-2 4 4 3 3 4 2 4 3 4 4 4 2 4 4 2 2

S-3 4 4 5 4 4 1 3 4 4 5 4 1 4 3 4 2

S-4 5 4 5 3 4 1 4 3 4 5 5 3 3 2 3 1

S-5 3 3 5 4 3 2 4 4 4 5 3 2 4 1 3 2

S-6 4 4 5 2 1 1 5 3 3 5 1 2 4 2 3 1

S-7 4 4 5 5 4 2 4 5 4 4 5 5 1 4 4 2

S-8 1 1 3 3 4 4 2 5 3 5 2 2 3 2 3 3

S-9 2 4 4 5 5 2 5 3 2 5 5 3 2 1 3 3

S-10 1 2 1 3 2 4 2 1 1 3 3 2 2 2 4 3

S-11 3 3 5 3 4 2 5 4 5 4 4 4 1 4 3 2

S-12 4 2 4 4 5 4 2 4 2 2 4 1 2 1 4 5

S-13 4 2 4 4 4 2 4 4 4 4 4 4 3 3 3 2

S-14 4 5 5 4 3 1 3 3 5 5 4 2 3 2 4 4

S-15 4 4 4 4 3 2 4 5 5 5 4 4 4 3 3 3

S-16 3 5 5 3 4 1 3 5 5 5 3 1 2 4 3 1

S-17 4 4 5 4 4 1 3 4 4 5 4 5 4 3 4 2

Limitations in problem solving skills in computational sciences majors 173

Item

 Stu
I-1 I-2 I-3 I-4 I-5 I-6 I-7 I-8 I-9 I-10 I-11 I-12 I-13 I-14 I-15 I-16

S-18 4 4 5 5 4 2 4 5 4 4 5 5 5 4 4 2

jC 3.44 3.56 4.33 3.78 3.72 1.94 3.67 3.89 3.72 4.44 3.83 2,94 3.06 2.72 3.44 2.44
2
jσ 1.26 1.32 1.18 0.77 1.04 1.11 1.16 1.06 1.27 0.73 1.21 2,17 1.35 1.27 0.50 1.20

jσ 1.12 1.15 1.08 0.88 1.02 1.06 1.08 1.03 1.13 0.86 1.10 1,47 1.16 1.13 0.70 1.10

jv 0.33 0.32 0.25 0.23 0.27 0.54 0.29 0.26 0.30 0.19 0.29 0,50 0.38 0.41 0.20 0.45
P (+) 12 12 15 11 13 3 12 11 13 16 13 7 8 6 8 3
P (-) 3 4 1 1 2 15 1 3 3 1 2 9 6 8 1 11

P(+/-) 3 2 2 6 3 0 5 4 2 1 3 2 4 4 9 4
MaxP. 5 5 5 5 5 4 5 5 5 5 5 5 5 4 5 5

 MinP. 1 1 1 2 1 1 1 2 1 2 1 1 1 1 2 1
Where:
P (+): the number of evaluations performed with scores 4 or 5. P (-): the number of evaluations performed
with scores 1 or 2. P (+/-): the number of evaluations performed with score 3. MaxP represents the
maximum value of the scores and MinP represents the minimum value of the scores.

Table 2: Students’ ratings of Informatics Engineering for each indicator of the survey. Arithmetic

mean of the students’ criteria of and statistical dispersion measures to evaluate the
level of concordance by indicator. [Source: Created by the authors].

Item

Stu

I-1 I-2 I-3 I-4 I-5 I-6 I-7 I-8 I-9 I-10 I-11 I-12 I-13 I-14 I-15 I-16

S-1 4 5 5 1 4 2 5 5 5 3 3 3 1 5 3 2

S-2 2 2 4 4 4 2 4 4 2 4 4 2 2 4 4 2

S-3 4 5 4 4 3 1 3 4 2 5 4 4 4 3 4 3

S-4 4 5 4 3 5 2 3 4 4 5 3 1 4 2 4 5

S-5 5 4 4 4 5 2 4 4 4 5 4 4 4 4 2 2

S-6 5 3 5 4 4 2 2 3 3 5 5 3 3 4 4 2

S-7 3 4 5 5 3 3 2 4 3 4 4 1 4 5 3 3

S-8 4 4 5 5 4 2 4 4 4 3 4 2 2 1 2 1

S-9 4 4 4 3 3 3 4 3 3 5 5 3 2 1 5 5

S-10 4 4 5 5 4 2 4 4 4 4 4 2 2 4 4 3

S-11 5 5 5 2 4 1 5 5 2 5 5 5 5 1 1 1

S-12 4 4 4 3 4 3 2 4 1 5 3 5 4 2 5 5

S-13 5 5 5 4 4 4 2 5 4 2 4 1 2 3 2 1

S-14 4 5 5 4 4 3 4 3 3 5 5 3 3 2 4 2

S-15 5 4 5 3 4 2 4 3 3 4 4 2 3 3 3 2

S-16 5 5 4 4 4 2 5 5 5 3 1 1 1 1 5 1

S-17 4 4 4 3 3 3 3 3 4 5 3 4 4 4 3 2

S-18 2 4 4 3 4 1 5 5 4 5 5 4 3 4 4 2

S-19 4 4 4 2 5 2 4 5 4 5 3 1 3 1 3 5

174 IJEDICT

Item

Stu
I-1 I-2 I-3 I-4 I-5 I-6 I-7 I-8 I-9 I-10 I-11 I-12 I-13 I-14 I-15 I-16

S-20 5 5 5 5 5 1 4 4 4 4 4 3 4 3 2 3

S-21 3 3 5 3 5 2 5 4 3 3 4 2 4 2 4 2

S-22 3 4 5 4 3 2 5 5 4 5 2 2 1 2 5 2

S-23 4 4 4 3 4 1 4 5 3 5 5 4 4 3 3 1

jC 4,00 4,17 4,52 3,52 4,00 2,09 3,78 4,13 3,39 4,30 3,83 2,70 3,00 2,78 3,43 2,48
2
jσ 0,70 0,60 0,26 1,08 0,45 0,63 0,57 1,09 0,98 0,86 1,06 1,68 1,36 1,72 1,26 1,81

jσ 0,83 0,78 0,51 1,04 0,67 0,79 0,76 1,04 0,99 0,93 1,03 1,29 1,17 1,31 1,12 1,34

jv 0,21 0,19 0,11 0,29 0,17 0,38 0,20 0,25 0,29 0,22 0,27 0,48 0,39 0,47 0,33 0,54
P (+) 18 20 23 12 18 1 18 16 12 18 16 7 10 8 12 4
P (-) 2 1 0 3 0 17 0 4 4 1 2 11 8 10 5 15

P(+/-) 3 2 0 8 5 5 5 3 7 4 5 5 5 5 6 4
 MaxP. 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5

 MinP. 2 2 4 1 3 1 3 2 1 2 1 1 1 1 1 1
Where:
P (+): the number of evaluations performed with scores 4 or 5. P (-): the number of evaluations performed
with scores 1 or 2. P (+/-): the number of evaluations performed with score 3. MaxP represents the
maximum value of the scores and MinP represents the minimum value of the scores.

Table 3 shows, for each indicator and for operational variable under study, the population-level
estimate of the mean and variance. In addition, it presents the absolute error, the coefficient of
variation and the 95% confidence interval. The last column of the report provides the assessment
made on the operational variable studied and its respective operationalization in 16 indicators.

Table 3: Inferences to the student population of the four computational sciences majors at
University of Oriente, based on a probability sampling two-stage cluster. [Source: Created by the
authors].

Indicators Mean Variance Coefficient of
Variation Error Lower

Limit
Upper
Limit

Qualitative
Interpretation

I-1 3.827 0.014 0.031 0.234 [3.593 4.061] Favorable, with very
favorable features

I-2 3.976 0.017 0.033 0.260 [3.716 4.237] Favorable, with very
favorable features

I-3 4.522 0.002 0.011 0.100 [4.422 4.621] Very favorable

I-4 3.701 0.004 0.017 0.129 [3.572 3.830] Favorable

I-5 3.951 0.004 0.016 0.125 [3.825 4.076] Favorable, with very
favorable features

I-6 2.062 0.001 0.016 0.065 [1.998 2.127] Unfavorable, with very
unfavorable features

I-7 3.801 0.001 0.009 0.072 [3.729 3.873] Favorable

I-8 4.100 0.003 0.014 0.113 [3.986 4.213] Very favorable

I-9 3.601 0.006 0.022 0.157 [3.444 3.758] Favorable

I-10 4.446 0.002 0.011 0.097 [4.349 4.543] Very favorable
I-11 3.900 0.001 0.008 0.062 [3.838 3.962] Favorable

Limitations in problem solving skills in computational sciences majors 175

Indicators Mean Variance Coefficient of
Variation Error Lower

Limit
Upper
Limit

Qualitative
Interpretation

I-12 2.856 0.004 0.021 0.119 [2.737 2.975] Unfavorable

I-13 3.080 0.001 0.009 0.056 [3.024 3.137] Favorable

I-14 2.807 0.001 0.009 0.048 [2.759 2.855] Unfavorable

I-15 3.503 0.001 0.008 0.056 [3.447 3.558] Favorable

I-16 2.509 0.000 0.008 0.040 [2.469 2.549] Unfavorable
Operational

variable 3.540 0.001 0.008 0.060 [3.480 3.600] Favorable

Results of the interview to teachers

For the first indicator below are some of the teachers’ answers:

• «(…) It does not matter the programming language in which the algorithm designed at the

stage of program elaboration is implemented, because sometimes the C ++ syntax delays
students with aspects that are not important (…)» (T-20).

• «(…) the programming language used to implement and execute the program is not important
because the algorithm can be adapted to any of the existing ones. (…)» (T-19)

• «(…) in the programming is not relevant the syntactic part that is carried out in the execution,

because that is the responsibility of the compilers (...) no matter the programming language
but the algorithm developed (...) make the program is mechanical, not the design (…)» (T-15).

• «(…) the students present difficulties to algorithmize, evidenced in that it is difficult for them to

find the mathematical solution, since they do not have a good mathematical training and they
lack elements of the abstract thinking that allow them to take the task to algorithms to obtain
the solution of the problem (…)» (T-1).

• «(…) most do not know how to algorithmize and have problems in mathematical modeling.

Students do not check the algorithms manually to verify their solution (they do not make a
semantic check) (…)» (T-9).

• «(…) many do not know how to algorithmize, and present serious problems to implement in a

language. They do not know how to analyze and interpret a problem (...) they do not design
the algorithm correctly (…)» (T-11).

• «(…) emphasis should be placed on the mathematical comprehension and modeling of the

problem, (...) it is always necessary to perform a previous low level modeling where the
relationships between the objects or variables of the problem to be solved are evidenced and
then move on to a formal mathematical modeling, previous to the algorithmization (…)» (T-12).

• «(…) many students do not know how to analyze and interpret a problem (…)» (T-7).

• «(…) most students do not adequately represent the problem situation through mathematical

structures. (T-4).

For the second indicator below are some of the teachers' responses:
• «The use of mathematical packages should be enhanced when teaching programming (…)»

(T-5)

176 IJEDICT

• «The mathematical program is not the same as the computational one, since in the first one

an input is given and a result is obtained, and in the computational program a generalization is
sought in such a way that for any data the same result is obtained» (T-7)

• «(…) teaching could be enhanced by the use of some software that shows the operation of the

computer» (T-2)

• «(…) it would be very helpful to have educational software for the subject, which would allow

the student to actually observe what happens in the machine when an algorithm is executed,
this would help him a lot when he had to abstract himself to design an algorithm» (T-6)

• «(…)you cannot teach to solve programming problems with instructions only, but through

abstractions, so that the student has a complete idea of the process» (T-7)

• «(…) students should be given at all times notions on how to optimize the algorithm, even if

they are very basic, to create a culture of computational optimization» (T-6)

For the third indicator below are some of the teachers' responses:

• «Dedicating more time to algorithmization, for example, a semester where they only design

algorithms in pseudocodes and flowcharts (…)» (T-1).

• «Acquiring a better preparation in mathematical knowledge to facilitate the creation of

algorithms (…)» (T-3).

• «Ensuring that high school students are taught to reason when solving a problem» (T-4).

• «(…) ensuring that high school students are taught to design algorithms for the computer,

although not implemented, with the goal of developing logical thinking (…)» (T-18)

• «(…) increase the hours in computer labs once the student starts programming (…)» (T-4)

DISCUSSION AND ANALYSIS OF THE RESULTS

About the Student Survey

From the results of the survey it was estimated that the average deviation of 3,540 for the
population data, is 0.001 units of the scale. The absolute error committed was 0.060, being lower
than the maximum permissible error or minimum tolerable precision to the estimator of the
population mean used, which was set at e = 0.11.Thus, with a 95% confidence, it can be stated
that the estimated population mean is located in the confidence interval [3,480; 3,600]. Therefore,
it can be concluded that the inferences to the student population of the computational sciences
majors at University of Oriente were favorable and the limitations were mainly found in items I-6,
I-12, I-14 and I-16, fundamentally related to the computational algorithmization process. The
results of the indicated items are described below:

In item I-6 the mean reached is 2.062, which makes it classified as unfavorable with latent
features of very unfavorable. These results indicate that there are difficulties in understanding
and interpreting a problem situation, since students begin to solve a problem situation without
being totally clear of what is required and this often leads to solve a problem different from the

Limitations in problem solving skills in computational sciences majors 177

one that arises. Likewise, other researchers have obtained similar results to the present study,
such as Apiola and Tedre (2012), who used group interviews and quantitative surveys identified
that students often lack skills such as comprehension and resolution of problems, which are
necessary to learn computer programming.

Also noteworthy are Adu-Manu, Kingsley and Owusu (2013) who conducted student surveys and
interviews with teachers with the objective of determining the limitations in teaching and learning
methodologies of programming. Concluding that most of the students lack the skills to analyze
and solve computational problems and that present problems for the understanding and
representation of the concepts in the main themes of the programming.

This difficulty in the understanding and interpretation, although it has been worked didactically
from different sciences, requires a particular treatment from the Didactics of Computational
Programming, since students must be trained to perform effective analysis, which leads them to
understand and interpret a problem situation before of proceed to its mathematical-computational
resolution.

The items I-12 and I-14, corresponding to "designing the algorithm before implementing it in a
language" and "resolving a computational programming problem directly in a language without
using pseudocodes", obtained values 2.856 and 2.807 of the estimate for the population mean,
classified as unfavorable. These values reveal that the majority of students do not create an
algorithm or use pseudocodes before implementing the solution in a programming language,
which accounts for the insufficient valuation they make of the importance of carrying out the
design of the algorithm through pseudocodes to have a successful performance in solving
computer programming problems.

These results are similar to those reported by Vargas, Pérez and Blanco (2014) of the University
of Informatics Sciences, Cuba, who, with the objective of estimating students' skill to develop
algorithms, analyzed the semester reports of the Programming subject and surveyed more of
1000 students of the Informatics Sciences Engineering major. By means of these instruments,
they determined that students have little skill to develop algorithms of medium complexity, do not
dominate a problem solving methodology and are not able to develop a viable model or structure
to solve the problem and abstract the different behaviors of a task.

Also, researchers Dillon, Anderson-Herzog and Brown (2014), in a study conducted with students
of the University of Alabama, in majors of Computer Science, Electrical Engineering and
Computer Engineering, using surveys, determined the advantages of teaching Students to
program with tools without syntax, as visual environments could provide students a lower learning
curve for the development of algorithmization skills, and may create limitations in their mental
representation of programming. This result reinforces what we obtained in the surveys with the
students of the computational sciences of the University of Oriente, referring to items I-12 and I-
14, which evidences the need to develop in students the skills to program, before using a high-
level programming language.

In item I-16, an average of 2.509, classified as unfavorable, was obtained, relative to "when a
program complies with the syntax of a language and its execution is correct, it fulfills the objective
for which it was implemented". This reflects that most students focus on the domain of the
syntactic part of computational language, to the detriment of the semantic aspects that are
inherent in any programming problem, that is, once students verify that the program is executed,
they assume that it fulfills the desired intentionality, without performing a detailed semantic
validation of the conditions of the initial problem situation.

178 IJEDICT

The researchers Adu-Manu, Kingsley and Owusu (2013) obtained evidence, in the study cited
above, that students present many difficulties to learn the syntax of programming languages,
which limits them to correctly understand the programming problem they try to solve. These
researchers suggest using flowcharts and algorithms to teach concepts and to help students
understand the ideas that are transmitted from the teacher to the student. This, according to them,
allows the student to understand the problemic situation before coding in a language, since direct
encoding in most cases confuses the student.

Likewise, the results obtained in the present study coincide with those found by mexican
researchers Sánchez, Urías and Gutiérrez (2015), who conducted interviews with students and
professors of the major Computational Systems Engineering from the Indigenous Autonomous
University of Mexico, with the aim to determine the problems that are manifested in the learning
of programming. These researchers observed that when students edit the code in a development
environment, if the compiler does not show the syntax errors, they think the problem is already
solved, otherwise they feel they do not know how to program. So they actually lose more time
with the syntactic part, than in the design of the program.

For the interpretation of the results, the bipolar character of the scale (positive and negative)
has been taken into account, analyzing only the negative traits. However, it is useful to
deepen the qualitative levels in which the positive pole is structured, with the intention of
discerning those aspects in which the process under study can be further refined.

Consequently, items I-1, I-2, I-5, I-4, I-7, I-9, I-11, I-13 and I-15 were evaluated as favorable
and in addition the first three reached features of very favorable. Although these results are
positive, it is considered necessary to continue to improve the processes related to the
comprehension of the initial problem situation, the mathematical-computational representation of
this situation (in particular the algorithmic representation using pseudocodes) and the final
syntactic-semantic validation. This is evidenced by the fact that students do not yet reach a very
favorable evaluation in items I-4, I-7, I-9, I-11, I-13 and I-15, which accounts for the need to
continue perfecting the processes.

However, based on the statistical inference, items I-3, I-8 and I-10 reached very favorable
assessments, which refer to the “repeated reading of the problem situation”, to “the logical order
for using computational structures” and “testing of the solutions with multiple sets of data”. In
general, students pass repeatedly and automatically from the reading of the problem to their
computational implementation, without realizing a totalizing comprehension of the initial
problem situation, so they really do develop reading, but do not necessarily reach an
adequate comprehension. In addition, basic programming structures and their logical order are
learned, but frequently, in the face of a specific problem situation, they do not manifest skills for
the identification, selection and hierarchization of such structures, since students find it easier to
automate the functioning of the structures than apply them to problematic situations. This is
explained by the fact that the first skills are clearly reproductive, while the latter are productive,
requiring the concurrence of an algorithmic-computational thinking.

Something that should be noted, is that it is significant that these limitations remain in second
year students, who have already studied and passed the subject of Programming and still
undervalue the potential of the algorithmization to structure the process of resolving
computational programming problems. However, this corroborates the fact that there is an
abandonment of the algorithmic didactic approach to develop the dynamics of this process,
prioritizing those approaches focused on direct work with a high-level programming language.

Limitations in problem solving skills in computational sciences majors 179

About the interview to teachers

Summarizing the essential aspects of the interview, one can see that in the indicator "moment of
the programming process in which the greatest difficulties are confronted", the most relevant
responses of teachers can be classified according to two limitations: "the application of a high-
level language for programming without conceiving and employing a previous algorithm” and “the
abilities to algorithmize”.

Regarding the first insufficiency, teachers agree that the use of a high-level programming
language to teach directly to program is not appropriate, because the student wastes too much
time learning the syntax and does not spend time to create and develop algorithmization skills
that allow solving problems correctly. This view of teachers is shared by dissimilar researchers,
highlighting Arellano et al. (2014) who, in studies carried out at the National University of San Luis,
Argentina, with students of the Electronic Engineering major, corroborated the good results
obtained when teaching programming without using high-level languages directly, since using
pseudocodes students were able to better understand the logic of algorithms, as a step prior to
programming in a more complex integrated programming environment and in formal
programming languages such as C ++ or Java. These authors also analyze the use of softwares
to learn to algorithmize, but without having to deal with the strict peculiarities of the syntax,
observing that they develop in the students greater abilities for the construction of algorithms.

Teachers also consider that, when the algorithm is designed, its translation into a specific
language is quite simple and as there are now compilers that point out the syntactic errors, the
problem is reduced to that the algorithm fulfills the desired intentionality. On these opinions,
authors like Martínez and Fariñas (2012), have obtained similar results, affirming that the
contents referring to languages or software for specific uses, come to occupy a second plane,
when searching for the solution of a computational problem applying heuristic resources (rules,
strategies, principles) and algorithms (known basic procedures); that is, the solution is first
modeled by an algorithmic description and then implemented in a programming language.

In the second case, regarding the insufficiencies in the skills to algorithmize, the teachers
recognize the algorithmization as an essential part of the programming process, framed in the
stage of elaboration of the program, as a generalizing structure, allowing its implementation in
any programming language. They also emphasize the previous stage of analysis and
interpretation of the problematic situation, evidencing the pertinence of designing an algorithm
that reflects the solution of the problem that is trying to solve, before going to its implementation.

The previously mentioned researchers, Sánchez, Urías and Gutiérrez (2015), also concluded in
their study, that it is necessary to teach students to algorithmize, before using some language,
stating that in this way the student develops the capacity for logical reasoning to resolve problems
using computers. Thus, they propose the inclusion of a subject to develop algorithms before to
program object-oriented.

On the other hand, the teachers considered as relevant the formation of an abstract thinking in
terms of programming and skills to optimize the algorithms. These opinions are shared by others
researchers, among them Arellano et al. (2012), who assert that the current trend is to use
software tools as didactic support to facilitate teaching-learning of algorithms. They also explain
that at university level the use of computational tools based on pseudocode representations or
flow diagrams is more frequent, and they propose the softwares: PSeInt, RAPTOR and DFD,
which enhance the development of skills in the design of algorithms.

Likewise, our results agree with the studies argentine researchers Arellano et al. (2014), who
propose for the teaching of programming to use various softwares to introduce the student to the

180 IJEDICT

notion of algorithm, to graphically complement its resolution, to execute it and to debug it, thus
favoring the creation of computational thinking. Similarly, Kordakia, Miatidisb and Kapsampelisa
(2008) investigated the apparent feasibility of modeling fundamental programming concepts,
focusing on value and reference assignment to teach programming, noting that many students
appeared to have mental models "non-viability" of these fundamental concepts and that those
students who had viable mental models had significantly better performance in programming
tasks. This reinforces the opinions of teachers interviewed, related to the need to use
computational products to support the teaching-learning process of programming.

Finally, when asked about “how you would like to be taught Programming?”, the teachers
answered in three very important directions, one referred to the increase in work in algorithmic
training (whether using pseudocodes, flowcharts or software to algorithmize), another directed
towards the reinforcement of mathematical formation (in previous and higher education) and the
last one aimed at beginning the teaching of the programming from previous educational levels to
the university.

These opinions of teachers regarding the need for algorithmic and mathematical formation have
been corroborated in studies carried out by researchers Zamora, Orús and Díaz (2010), in the
courses of Bachelor in Computing Science and Bachelor in Mathematics in the University of
Oriente, Cuba. These authors, through the implicative statistical analysis, deepened in the
learning of the students of both majors, being able to conclude that when a student who starts in
the programming succeeds in appropriating the contents of the mathematical analysis and
algebra subjects, has a great probability to approve the subject of Programming.

In this same order of ideas, the cuban researchers Urrutia and Álvarez (2009) from the University
of Havana, and Vargas, Pérez and Blanco (2014) from the University of Informatics Sciences,
both from Cuba, analyzed how the disciplines Mathematical Analysis (in the first case) and Linear
Algebra (in the second), can them contribute to basic skills in students who are learning to
program, such as modeling, representation and algorithmization using solid mathematical
knowledge allow to perform computational programming tasks. On the other hand, the researcher
Yasar (2013), concludes from studies carried out, the convenience of mathematically modeling
the problem to be solved, because when a mathematical model is already available, the objective
is to find a solution in Form of algorithm, for which pseudocodes can be used, forgetting the
syntax of formal languages.

However, as regards the teaching of programming from pre-university level to the university level,
cuban researchers Martínez, Pereira and González (2014) agree on their importance and affirm
that in Cuba since the 12th grade the first Programming concepts are introduce. This is a good
practice, the problem is that Visual Basic is used, reason why we consider that the language
should be changed, since it has been shown that the results in the programming are not good
when the students begin the computational sciences majors in the universities.

In addition, Spanish researchers Basogain, Olabe and Olabe (2015) say that in several countries
such as England, Canada and the United States, the teaching of programming has been included
in the primary and secondary levels, often through programming environments designed for
novice users. This has allowed students to gain greater programming skills before they start
studying at universities.

Analytical triangulation of the results of the applied instruments

Once the two instruments were applied, the student survey and the interview to Programming
teachers, we proceeded to perform an analytical triangulation with the objective of contrasting
and corroborating the insufficiencies in the teaching-learning process of resolving computational

Limitations in problem solving skills in computational sciences majors 181

programming problems, for which only the indicators evaluated as unfavorable were used, as
suggested by Gorina and Alonso (2012).

In the case of item I-6, it was possible to appreciate a correspondence between the students'
evaluations and the opinions of the teachers, in both cases it is concluded that there are
insufficiencies in the moment of comprehending and interpreting a problem situation. This stage
of "comprehension" is often underestimated by students, which is why mistakes are common
during the process of solving a problem situation. In this direction, many researchers have arrived
at similar conclusions based on observations made to the students' performance, among them
Adu-Manu, Kingsley and Owusu (2013), Apiola and Tedre (2012), Arellano et al. (2012), Yasar
(2013).

In the case of items I-12 and I-14, the evaluations made by the students show an insufficient
recognition of the importance of performing the algorithm design using pseudocodes, with the
objective of having a successful performance in the resolution of computational programming
problems. This result coincides with those obtained by the researchers Arellano et al. (2014),
based on surveys conducted to students of the Electronic Engineering major of the National
University of San Luis in Argentina, which conclude that there is an abandonment of the
algorithmic approach in the teaching of programming.

In contrast to the above, most of the teachers interviewed agree on the importance of recovering
the teaching of programming through the algorithmic approach, using pseudocodes or flow
diagrams, given that this allows to focus on the student's algorithmic thinking, without wasting too
much time learning the syntax of high-level programming languages. This opinion is shared by
other researchers such as Pinales and Velázquez (2014), who consider that the students who are
just beginning their studies in the area of programming should be offered a series of
representative problems, algorithmically solved, using pseudocode or flow diagrams, which helps
develop appropriate logical thinking in students. Also, teachers Tutillo and Ferrer (2015), based
on studies conducted in technical universities in Ecuador, agree that it is a necessity for students
to dominate algorithm techniques using pseudocodes before moving on to implementation in a
high-level programming language.

However, in item I-16, students' evaluations point to a greater domain of the syntactic part of the
computational language than to the semantic aspects of the algorithmization, which reduces the
efficiency in the resolution of computational programming problems. Nevertheless, most teachers
point out that the most important thing is to be able to conceive the algorithm, since its translation
into a specific language is not complex; but the practices of the teaching-learning process of the
computational programming show a very different reality to this view of the teachers, connoting
itself the teaching of the programming language of high-level, as opposed to the ways of
stimulation for the formation of an algorithmic thinking. This has been reaffirmed in the results of
numerous investigations, highlighting those carried out by Arellano et al. (2014), Cetín (2013),
Kinnunen and Simon (2012), Martínez and Fariñas (2012), Sánchez, Urías and Gutiérrez (2015).

In summary, what has been analyzed in this paper shows the need to transform the teaching-
learning process of resolving computer programming problems, prioritizing algorithmization using
pseudocodes or flow diagrams, for which it will be pertinent to elaborate theoretical and
methodological proposals that reveal the essential aspects of the cited process.

CONCLUSIONS

The results of the applied diagnosis made possible to point out that the main limitations of the
teaching-learning process of resolving computational programming problems are related to the

182 IJEDICT

processes of interpretation and comprehension of problem situations and to the recognition of
the need to design algorithms in pseudocodes before implementing the solutions of the
mentioned situations in a programming language.

The systematization carried out, based on the survey of students of the computer sciences
majors and the interview to programming teachers, reveal the need to expose the specific
aspects that distinguish the dynamics of algorithmization in the teaching-learning process of the
resolution of computational programming problems, through an integrative and coherent logic,
that allows to reach higher levels of interpretation of the essence of the problematic situation that
is approached.

The process of analytic triangulation revealed an insufficient use of the algorithmic didactic
approach to develop the dynamics of the teaching-learning process of resolving computational
programming problems, as well as the predominance of approaches that prioritize the teaching
of programming from working directly on a language, which accounts for the need to introduce
new relationships that enable the formation of computational algorithmization.

REFERENCES

ACM´05. 2005. “ACM / IEEE-CS Computing Curricula 2005. The overview report”. Available from:

en: http://www.computer.org/education/cc2005/ironman/cc2005/index.html [8 January
2016].

Adu-Manu, K, Kingsley, J. & Owusu, PY. 2013. “Causes of failure of students in computer

programming courses: The teacher-learner Perspective”, International Journal of
Computer Applications, vol. 77, issue 12, pp.27-32.

Apiola, M. & Tedre, M. 2012. “New perspectives on the pedagogy of programming in a

developing country context”, Computer Science Education, vol. 22, issue 3, pp.285-313.

Arellano, JJ., Nieva, OS., Solar, R. & Arista, G. 2012. “Software para la enseñanza-aprendizaje

de algoritmos estructurados”, Revista Iberoamericana de Educación en Tecnología y
Tecnología en Educación (TE& ET), no. 8, pp. 23-33.

Arellano, N., Fernández, J., Rosas, MV. & Zúñiga, M. E. 2014. “Estrategia metodológica de la

enseñanza de la programación para la permanencia de los alumnos de primer año de
Ingeniería Electrónica”, Revista Iberoamericana de Educación en Tecnología y
Tecnología en Educación (TE& ET), no.13, pp. 55-60.

Basogain, X., Olabe, MÁ. & Olabe, JC. 2015. “Computational thinking trough programming: a

learning paradigm”, Revista de Educación a Distancia, vol. 46, no. 6, pp.1-33.

Bayona, JA., Hurtado, C., Ruiz, IR., Hoyos, A. & Gantiva, CA. 2005. “Attitudes toward the sale

and consumption of psychoactive substances into the national university of Colombia”,
Interamerican Journal of Psychology, vol. 39, no. 1, pp. 159-168.

Blanco, A., Salgado, A. & Alonso, I. 2016. “Abilities for the computational algorithmization in the

Licentiate in Education: specialty education labor-informatics”, Revista Maestro y
Sociedad: Revista electrónica para maestros y profesores, vol. 13, no.1, pp. 16-28.

Cetin, I. 2013. “Visualization: a tool for enhancing students’ concept images of basic object-

oriented concepts”, Computer Science Education, vol. 23, issue.1, pp. 1-23.

Limitations in problem solving skills in computational sciences majors 183

Cochran, WG. 1980. “Muestreo”, Trillas, Mexico.

Dillon, E., Anderson-Herzog, M. & Brown, M. 2014. “Teaching students to program using visual

environments: Impetus for a faulty mental model?”, Journal of Computational Science
Education, vol. 5, issue 1, pp.1-2

Fergusson, EM., Alonso, I., Salgado, A. & Gorina, A. 2015. “Dynamics of the investigative

formation process in the career of bachelor's degree in Computing Sciences”, Revista
Didasc@lia: Didáctica y Educación, vol. 6, no.6, p.89.

Gorina, A. & Alonso, I. 2012. “A system of methodological procedures to improve the processing

of information in social researches”, Revista Didasc@lia: Didáctica y Educación, vol. 3,
no.6, pp. 91-108.

Guibert, N., Guittet, L. & Girard, P. 2006. “Performances et usages d’un environnement

d’apprentisage de la programmation basé sur exemple”, ERGO'IA, pp. 103-110.

Hernández, R., Fernández, C. & Batista, P. 2014. “Metodología de la investigación”, 6th edn,

McGraw-Hill, Mexico.

Kinnunen, P. & Simon, B. 2012. “My program is ok-am I? Computing freshmen's experiences of

doing programming assignments”, Computer Science Education, vol. 22, issue 1, pp.1-
28.

Kordakia, M., Miatidisb, M. & Kapsampelisa, G. 2008. “A computer environment for beginners’

learning of sorting algorithms: Design and pilot evaluation”, Computers & Education, vol.
51, issue. 2, pp. 708-723.

Ma, L., Ferguson, J., Roper, M. & Wood, M. 2011. “Investigating and improving the models of

programming concepts held by novice programmers”, Computer Science Education, vol.
21, issue 1, pp. 57-80.

Martínez, JA. & Martínez, L. 2008. “Determining the most unfavourable variance to calculate the

measurement scale imprecision factor, and extension to other types of sampling
methods”, Revista Psicothema, vol. 20, no. 2, pp. 311-316.

Martínez, R., Pereira, M. & González, R. 2014. “Feasibility of Python in teaching programming”,

Revista cientítfico pedagógica: Mendive, vol. 12, no.46, pp.179-186.

Martínez, S. & Fariñas, JL. 2012. “The competence elaborating informatics programs in the

teaching-learning process of the discipline programming language and techniques”,
Revista Didasc@lia: Didáctica y Educación, vol. 3. no.2, pp. 125-144.

Pinales, FJ. & Velázquez, CE. 2014. “Algoritmos resueltos con diagramas de flujo y
pseudocódigo”, Universidad Autónoma de Aguascalientes, Mexico. Available from:
http://www.uaa.mx/direcciones/dgdv/editorial/docs/algoritmos.pdf [1 January 2015].

Salgado, A .2015. “Logic-algorithmic dynamic of the process of resolving computational
programming problems”, PhD thesis, University of Oriente, Cuba.

Salgado, A., Gorina, A. & Alonso, I. 2013. “Model of the algorithmic–logic dynamic to solve

computer programming problems”, Revista Educare, vol. 17, no. 1, pp. 27 – 51.

184 IJEDICT

Salgado, A., Alonso, I., Gorina, A. & Tardo, Y. 2013. “Algorithmic logic to solve computational
programming problems: a didactic proposal”, Revista Didasc@lia: Didáctica y
Educación, vol. 4, no. 1, pp. 57-76.

Salgado, A., Alonso, I. & Gorina, A. 2014. “Exemplification of the solution algorithmic of problems

of programming computacional”, Revista Didasc@lia: Didáctica y Educación, vol. 5, no.
4, pp. 15-36.

Sánchez, JE., Urías, M. & Gutiérrez, BE. 2015. “Analysis of learning problems of object-oriented

programming”, Ra Ximhai, vol. 11, no. 4, pp. 289-304

Torres, M. & Torres, M. 2016. “ESENCi: Teaching strategy for computer problem solution using

problem based analysis”, Revista Educare, vol. 20, no. 2, pp. 78-102.

Tutillo, ID. & Ferrer, M. 2015. “Platform theoretical referential of the process of teaching learning

of the programming logic in the formation of technologists in analysis of systems”,
Santiago, vol.137, pp. 589-605.

Urrutia, I. & Álvarez, V. 2009. “Un acercamiento a las nociones de competencias básicas que la

Disciplina Análisis Matemático debe contribuir a desarrollar en los estudiantes de
Ciencias de la Computación”, Boletín de la Sociedad Cubana de Matemática y
Computación, vol.5, número especial 2009.

Vargas, A., Pérez, OL. & Blanco, R. 2014. “Algorithmization skill development: a view from

Science, Technology and Society studies”. Proceedings of the first International
scientific conference UCIENCIA 2014. University of Informatics Sciences. Cuba.
Available from: https://uciencia.uci.cu/sites/default/ files/public/p3499-ponencia-1062_
0.pdf. [12 June 2014].

Whitfield, AK., Blakeway, S., Herterich, GE & Beaumont. C. 2007. “Programming, disciplines and

methods adopted at Liverpool Hope University”, ITALICS, vol. 6, issue 4, pp.145-168

Yasar, O. 2013. “Computational Math, Science and Technology (C-MST). Approach to General

Education Courses”, Journal of Computational Science Education, vol. 4, issue 1, pp. 2-
10.

Zamora, L., Orús, P. & Díaz, JR. 2010. “El análisis estadístico implicativo, instrumento común de

investigación en una experiencia de cooperación multidisciplinar: Visualizar una
expresión de discontinuidad del rendimiento académico en estudiantes universitarios
de Matemática y Computación usando análisis estadístico implicativo”, Quaderni di
Ricerca in Didattica (Mathematics), no.20, suppl 1, pp.451-475.

Copyright for articles published in this journal is retained by the authors, with first publication rights granted
to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper

attribution, in educational and other non-commercial settings.

Original article at: http://ijedict.dec.uwi.edu/viewarticle.php?id=2281

