
International Journal of Education and Development using Information and Communication Technology
(IJEDICT), 2009, Vol. 5, Issue 3, pp. 85-100

Impact of using agile practice for student software projects in computer
science education

G.I.U.S. Perera
University of Moratuwa, Sri Lanka

ABSTRACT

Computer Science education is becoming a fundamental teaching area with the Information and
Communication Technology (ICT) development. It is a known fact that traditional educational and
teaching methods have certain limitations for ever changing technology based and software &
tools interactive courses such as teaching programming or software development. After years of
been practiced in the industry the Agile software development process possesses standard
characteristics of a process paradigm. However, it is rare to observe studies on Agile practice
used in computer science education with its impact to student learning. This paper describes
findings of such study conducted in a university education environment. The study was conducted
on a student programming project, with sample size of 100. The results indicate a significant
impact on students’ skill improvements up to 29.23% at best case. It also shows, a reliable
method of improving relatively weaker students’ programming skills, showing fascinating average
skill variance between their project mates, reduction from 0.508 to 0.209. Furthermore, Agile
process practiced students have shown 6.33% and 5.65% higher marks for coding and final
evaluations of their projects on average, over the controlled experiment sample.

Keywords: Agile process, Pair Programming, Computer Science Education, Teaching
Programming, Student Software Projects, Learning Development, ICT Learning

INTRODUCTION

The fruitful education is a fundamental necessity for human development. Throughout the human
civilization there have been many distinguished learning and teaching methods developed and
used. With the technological advancements in different disciplines, educational methodologies
and norms have to be evolved from time to time. Due to the increasingly diverse population,
education is changing toward a more global, technology-rich environment designed to meet these
diverse and changing needs of students (Gunter, 2007). One of the most valued benefits that
Information and Communications Technology (ICT) affords over traditional teaching practices is
its capacity to extend the student’s learning beyond the actual limitations of the classroom. This
enhancement of the student’s learning refers not only to the place, but also to the time and
people that are involved in the process (Arbelaiz & Gorospe, 2009).

“Also Rapid advances in ICTs demand changes to our education systems … While most
educators appear to acknowledge the importance and relevance of Information and
Communication Technologies within teaching, difficulties nevertheless continue to be
experienced within the processes of adopting these technologies” (Knight et al., 2006).

Beyond that teaching computer programming, which is indeed in a well ICT enabled learning
environments needs more technological enhancements to the teaching activities to develop
further. The potential value of effective support tools and methods helping students grasp difficult
programming concepts is even greater (Domingue & Mulholland, 1997). This emphasises, that
teachers for computer science need to work further steps ahead of just using ICT enabled

86 IJEDICT

environments to teach the students; one area may be to incorporate cutting edge ICT tools,
practices, and processes with the learning activities.

As much like with other disciplines, teaching computing and ICT industry is highly interdependent.
Student projects are done with the collaboration of industry and industry expects rapid absorption
of fresh talents to their mainstream projects without any advance training efforts. The Department
of Computer Science and Engineering (CSE) at University of Moratuwa, maintains a good rapport
with the Sri Lankan ICT industry making mutual benefits to each other. There have been frequent
curriculum revisions to accommodate industry needs while preserving the merits of university
education. This research is the effort to examine the suitability of using heavily industry utilized
software development process practice in student software projects.

The organization of the paper is as follows. The next section discusses the background literature
of the research in a brief manner covering the areas of computer science education, Agile
software process, and pair programming. After that the research problem, which initiated the
necessity of novel approaches for teaching programming is described. The experiment
methodology explains the process carried out for the research including the experiment
background and experiment setup with key parameters used. Thereafter, a comprehensive
analysis based on the experiment results is included. The analysis section rationalize the
argument of this paper that Agile process shows significant positive results on student
programming projects supporting them to grasp complex skills more easier. The analysis also
includes a questionnaire data analysis on experiment sample students’ feedback of the process
they followed. The paper also discusses the experiment limitations and their relative impact to the
study observations to facilitate fair and neutral judgement for the readers. The conclusion draws
readers’ attention towards possible further researches and policy implications to be drawn, while
summarizing the research in brief. Finally, the references complete the paper.

BACKGROUND LITERATURE

This section includes a brief summary on literature which was mainly used as the basis for this
study. One could find a reasonable amount of literature on education methods and development
approaches relevant to the university education, including ICT education. However, for this
particular study, a specific focus computer science education and Agile methods was given as
they provide the stem of this research. Importantly, the Agile software development methods have
proven its success in the industrial projects, but not much examination were done on student
projects context. Therefore, even though this study entirely used the Agile process in student
projects context, the literature might appear more towards industry based findings. Nevertheless,
there is no difference on using Agile practices in either context, hence the findings from literature
can be considered as valid sources.

Computer Science Education

Teaching computer science has never been a straightforward or simple process. As a result, a
great deal effort has been aimed at improving the teaching process (J. Domingue, P. Mulholland
1997). There have been a number of studies, which have attempted to identify Information
Systems (IS) graduate skills and the resultant curriculum (McCarthy and Hawking, 2002). Some
researchers have tried to define a new research area for computer science education taking it in
isolation to the traditional education system. This was heavily criticized by Almstrum and others
as

“The real challenge in computer education is to avoid the temptation to re-invent the
wheel. Computers are a revolutionary human invention, so we might think that teaching
and learning about computers requires a new kind of education. That’s completely false:

Using Agile Practice for Student Software Projects 87

The basic mechanism of human learning hasn’t changed in the last 50 years” (Almstrum et
al., 2005).

Furthermore, Mason and Weller indicated that …the conditions which are needed to produce
good educational discussions are far more complex, more people-dependent and more
educationally determined than mere technology will ever influence very significantly (Mason and
Weller, 2000). However, as Covington expressed, lack of clarity about the benefits of technology,
lack of willingness to take risks, and the need for more rigorous course planning have deterred
some academics ‘entrenched in traditional tools and pedagogies’ from changing familiar
instructional practices (Covington et al., 2005), is one of the main reasons which explains why
academics do not much research on complex software technologies to improve computer science
education. Furthermore, the emphasis on technology in education is not to imply that the
technology is the goal of the educational process; however, a technological learning environment
can alter the way students learn and the way professors teach (Culp et al., 2005).

“Access to new technologies, the changing nature of higher education and an increasingly
diverse student population highlight the need to review the ways higher education is delivered”
(Birch & Sankey, 2008). This emphasise the necessity of doing continuous research on possible
improvements for the teaching methods. One of the most difficult concepts to teach is adopting a
critical position in relation to inquiry about digital technologies (Arntzen, et al., 2008) is a good
statement with respect to identifying possible new approaches for overcoming issues in teaching
ICT disciplines. Computer programming still remains an important part of most Information
Systems courses. However the emphasis today is on teaching programming concepts and style
and using programming languages to support this objective (McCarthy and Hawking, 2002).

Agile Software Process

Agile software process was defined as collective nature by group of experts to overcome issues
with the traditional software processes. Agile Manifesto was the proper introduction of the agile
methods to the software industry. According to the Agile Manifesto the following four norms are
the basics of the Agile methods.
 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan (Agile Manifesto, 2001).

“Agile Methods are a reaction to traditional ways of developing software and acknowledge
the need for an alternative to documentation driven, heavyweight software development
processes” (Cohen et al., 2003).

In most of the traditional software processes, there are heaps of documents when the project
finishes. Despite from those most obvious differences between plan-driven life-cycle models and
agile development is that agile models are fewer documents oriented and place more emphasis
on code development (Perera & Fernando, 2007). By the nature of this paradigm it also provides
some other benefits like, flexible project management, cost effective adaptability (Perera &
Fernando, 2009), increase communication and ultimately increased customer satisfaction (Perera
& Fernando, 2007).

There are many principles behind the agile practice. Some of them are based on behavioural and
managerial improvements to the software development (Agile Manifesto, 2001). The development
process is flexible and agile practitioners believe for different projects, different approaches and
process models have to be used. Agile process welcomes frequent requirement changes even at
late stages of the project. With frequent deliverables, agile process measures its progress
through the norm of working software (Dagnino, 2002). The Agile philosophy promotes new
ideas of system development that contrasts traditional methods (Highsmith & Cockburn, 2001).

88 IJEDICT

Importantly, Agile type of thinking has initiated a massive paradigm shift in the software
development arena. Even Agile does not cover the entire spectrum; this attitude change was the
significant achievement.

A simple but comprehensive definition about identifying an Agile project by Abrahamsson and
others in their book explained as

“What makes a development method an agile one? This is the case when software
development is incremental (small software releases, with rapid cycles), cooperative
(customer and developers working constantly together with close communication),
straightforward (the method itself is easy to learn and to modify, well documented), and
adaptive (able to make last moment changes) (Abrahamsson et al., 2002).

Pair Programming

The idea behind pair programming, also known as Collaborative Programming, is straight-
forward. It involves two programmers collaborating side-by-side on the design, coding and testing
of a piece of software. One, the Driver, controls the keyboard/mouse and actively implements the
program. The other, the Navigator/Observer, continuously observes the work with a view to
identifying tactical defects and providing strategic planning (Lui & Chan, 2006). The pair
programming is one of the core practices in the Agile process.

Williams et al. (2003) have done extensive research for using pair programming as learning
method and their work extended to university programming courses. Students who performed
pair programming was able to produce more code and their code were easily readable (Bipp et
al., 2008). Students who followed pair programming shows competence in solo programming
(individual programming) activities and possess positive attitudes towards programming courses
(Williams et al., 2002). Another important characteristic with the pair programming is the peer
evaluation of each others programming activities. This is similar to having a mentor next to the
student throughout his work which is really impossible to achieve in university education. Peer
assessment is known to have positive effects on student satisfaction and learning effectiveness in
different disciplines in higher education (Gatfield, 1999). There is evidence that encouraging
novice programmers to self-explain and critique their impasses improves understanding (Davis,
Linn, & Clancy, 1995), This may be difficult with a superior person such as teacher, assessor but
can be easily done with own colleagues, peers.

RESEARCH PROBLEM

There were several issues with the present learning process of computer programming, laid the
step stone for this research. Out of those the lack of collaborative learning environment for
students was significant. “From a pedagogical and constructivist perspective, collaborative
learning methods tend to encourage construction of knowledge, deeper understanding and
greater skill development by their ability to engage students dynamically in the learning process”
(Alavi, 1994). In fact the Agile process has shown its ability to form a collaborative software
development environment in the industrial practice (Perera & Fernando, 2006).

According to Kember’s description, there are two kinds of broad orientations in teaching: the
teacher-oriented conception and the student-oriented conception (Kember, 1997). The teacher-
centred learning strategies are described as focusing on the teacher transmitting knowledge from
the expert to the novice. In contrast, the student oriented learning strategies are to focus on the
students’ learning and ‘what students do to achieve this, rather than what the teacher does’
(Harden and Crosby, 2000). This is what exactly the students require in their programming
courses. However, on the other hand there is danger of students’ frustration if they allowed their

Using Agile Practice for Student Software Projects 89

own learning, especially when it comes to bug fixing and compiling the code without errors. This
indicates a new paradigm of learning with significant autonomy for students is required for
improving.

Another problem area with student programming projects is that even though the students were
allowed to practice group working the evaluation criteria are mainly based on considering the
outcome. In such scenario how the group has able to produce the results are not much relevant
(Johnston & Miles, 2004) What actually happens in many cases is the students work their parts
individually and try to integrate them together at the end making the peer-to-peer interactions
minimum (Vik, 2001) and not achieving the expected goals of group working. This creates
another major issue with weak students in the group projects where they struggle with their parts
to complete where as the competent students have already completed. At the end knowledge
improvement of weak students will not happen as expected. Furthermore, their inability to meet
with group competent level make them as a burden to the group and their programming life
becomes a misery for them. This could easily make students to cheat and plagiarize others’
works which teachers do not tolerate on any circumstances.

Team work and the clear presentation of ideas more accurately reflects the current tasks of the
industrial programmer than sitting alone carrying out a programming assignment (Dawson et al.,
1992). Effective teamwork requires mastering specific abilities, such as leadership, coordination
and conflict management. This implies that if higher education wants to meet the requirements of
the students’ future professional lives, it has to address the acquisition of such soft skills and has
to have the technology to support those (Rugarcia et al., 2000). This was another major problem
with students’ internships, and employment when they graduate. The Dept. of CSE allows its
students to undergo internship program in their third year of study, i.e. just after the semester
which they took the CS320 course. Different industrial organizations practice various software
development process models but majority requires large amount of soft skills, team working
nature and agile practices. Students who have not experienced these practices are getting hard
time on the initial stages of their internships. At the same time industry prefers if the students who
come as interns, to have basic understanding of the Agile practices and pair programming, in
some cases.

At present the CS320 Programming Project follows milestone based project management which
is more or less like to a sequential project flow activity. The major disadvantage with this
approach is students blindly follow the deadline based activities without planning for their latter
stage software development. They initially commit more on specification and requirement
gathering activities but at the end they could not easily produce a good quality complete product.
On the other hand with the present approaches, facilitation for group work or knowledge sharing
on programming skills is very minimal. The environment is also vulnerable to most of the above
mentioned issues since lack of flexible process model to practice. Therefore, the Agile process
was selected to use as an alternative approach to overcome these problems. All these above
yield the significant question on evaluating the application of Agile practice in computer
programming courses. With the Agile practices’ reputation on industrial projects, it ensures
solutions for above mentioned problems if its impact on learning process is constructive.
Therefore this study focused on that as its main research problem.

EXPERIMENT METHODOLOGY

Experiment Background

As explained briefly above, the experiment was conducted with the undergraduate students at the
Department of Computer Science and Engineering, University of Moratuwa. According to the

90 IJEDICT

Bachelors of Science of Engineering (B.Sc. Eng) honours curriculum for Computer Science and
Engineering specialization, students have to follow two compulsory projects courses with
intensified software programming learning. CS320 Programming Project is the third year software
programming project which is mainly individual but allowed to form two member groups if there is
a reasonable workload and scope of the selected project. The other course module is CS420
Project, which is a two semester and one term long final year group project (4 members). For this
research, CS 320 Programming Project was considered. Most of the CSE learning activities are
now based on University of Moratuwa e-Learning Platform, LearnOrg-MOODLE (Perera, 2009).

As Earle stressed, underpinning any approach to the design and delivery of learning resources
should be a sound and clear pedagogical rationale (Earle, 2002), the experiment methodology
was designed with careful attention to avoid any unnecessary drawbacks getting into the learning
process. On the other hand the research was conducted during a running course module where
the students learning outcomes and results could be easily affected if not conducted properly.

CS320 Programming Project is a GPA (Grade Point Average) 2.0 credit worth of course module
which has 6 hours of lab works / equivalent lecturing or combination of both to form the credit
value. Since this is a compulsory course module every student has to follow the course and earn
the credits. Therefore 100 students were enrolled to the course module. Out of those 100
students there were 22 project proposals requesting to do a group project. However, 5 project
proposals were rejected by the proposal selection committee which due to one or more of the
following reasons;

 Lack of project scope for a worth of GPA 2.0 credit work
 Lack of project scope for a group credit requirement (i.e. credit 2.0 x 2 for two members)
 Infeasible project scope to complete within the time and effort constraints with the course

requirements
 Insignificant component of programming compared to the project scope.

Therefore, 17 group projects were approved and other students involved in individual projects.
However, only 11 groups were allowed and agreed to take part of this study due following
reasons.

 The project domain constrains do not supportive enough to practice pair programming
 Low motivation to follow the new practice with backed fear of getting low marks due to new

practices
 Too weak – weak or too expert – expert scenarios which can produce output either

overriding the actual impact of the agile practice or impact to their final output

The Students’ cumulative GPA was considered as a measure for their skill level for computing.
The considered student sample had the highest cumulative GPA value of 4.06 and lowest 2.64
(out of maximum 4.2). As mentioned in the research problem, since the objective of assessing
agile practice as a weak student competency improving approach the selected groups were
having a reasonable skill difference between the two members. However, having more than 0.75,
variance was not considered to avoid situation expert – weak scenario; none of the groups were
in that kind, though. To ensure these conditions preserve, two norms were introduced for
selecting groups for this study. One student should have the cumulative GPA in the range of 3.40
– 3.80 and the other should have his GPA in the range of 2.90 – 3.40. The groups’ GPA
distribution, Mean GPA and Skill Variances are shown in the table 1.

Using Agile Practice for Student Software Projects 91

Table 1: Student GPA distribution of selected groups for the study

Group 1 2 3 4 5 6 7 8 9 10 11
Student 1

GPA 3.52 3.67 3.54 3.55 3.71 3.69 3.7 3.75 3.78 3.61 3.58

Student 2
GPA 2.91 3.4 3.32 3.01 3.08 3.13 2.97 3.34 3.25 2.9 3.2

Group
Mean GPA 3.22 3.54 3.43 3.28 3.4 3.41 3.34 3.55 3.52 3.26 3.39

Skill
Variance 0.61 0.27 0.22 0.54 0.63 0.56 0.73 0.41 0.53 0.71 0.38

The entire students’ cumulative GPA distribution is shown in the figure 1. The class cumulative
GPA mean value µ1 was 3.475

0

2

4

6

8

10

12

14

16

2.5-2.6 2.6-2.7 2.7-2.8 2.8-2.9 2.9-3.0 3.0-3.1 3.1-3.2 3.2-3.3 3.3-3.4 3.4-3.5 3.5-3.6 3.6-3.7 3.7-3.8 3.8-3.9 3.9-4.0 4.0-4.1 4.1-4.2
GPA Range

Number of Students

Figure 1: Cumulative GPA distribution of the entire student sample

Experiment Setup

CS 320 course duration is 15 week semester. However, since the students are instructed to
finalize their project ideas with approval before the semester starts, they had almost 15 weeks for
their project works. Out of that 3 weeks are used to mid semester, end of semester evaluations
and project report preparations. Other 12 weeks are used for requirement elicitation, high level
system architectural design, low level detailed design, system development, system testing and
finally working system implementation. One advantage with the experiment setup is that the
students were already following the course CS 302 Software Engineering which already has
covered a substantial amount of knowledge on Agile Software Practice. Therefore, the 11 groups
could easily follow the practice guidelines without any difficulty; a group of expert lecturers were
readily available for support any difficulty on agile practice, though.

During the 12 weeks of project work, students have to spent some time on producing project
related documents, such as Fortnight Report (a report on the project progress in every two
weeks), finalized Requirement specification, Design Specification with Test Plan, and finally the
Project Report (a professional document following the industrial standard format on the entire
project work they carried out). As per the course module evaluation requirement, except for Final
Project Report, all other documents need to be submitted individually even for the group projects.

92 IJEDICT

However, the group project students were allowed to share their content on the documents with
their colleague group member to avoid unnecessary content replication and to preserve the
consistency on what they claim as their work.

The concept of Pair Programming was the major change introduced to the experiment groups.
Other than that the basic agile principles were also followed by the groups as the norms of the
practice.

Following Pair Programming – Students were given laboratory facilities (working place for two
members together) to practice the pair programming. It was a controversial change to the fixed
laboratory layout which encourages individual students to use the computers alone. In this study
this was the major difference experiment students experienced when compared with other
students’ works.

Individuals and Interactions over Processes and Tools – This was easily practiced as the
students were not allowed to use any excessive tools for their development other than the IDE
(Integrated Development Environments) and third party libraries with valid justification. Since they
are practicing the Pair Programming they had a strong trust on other partner’s commitment to
their success with continues interactions.

Working Software over Comprehensive Documentation – This was a difficult practice to
achieve with the experiment environment as the course module requires certain documentation.
Slightly compromised approach was followed to avoid any risks on students’ final grading, making
a win-win situation with supervisory advices to interchange tasks time to time (coding to
documenting and vice-versa)

Customer Collaboration over Contract Negotiation – In a student learning environment there
is a rare chance to have an external customer to interact. As the students were assigned to a
tutor/instructor with sufficient domain and programming knowledge, those were considered as the
customers respectively for the students. This consideration was not significant to other students
but for the groups who practiced the agile process. The students were asked to contact the
resource persons frequently and accommodate their alterations collaboratively. Contract
Negotiation was not applicable.

Responding to Change over Following a Plan – This is a quite tricky principle which many
practitioners believe as the agile practice does not allow following a project plan. In fact what it
really means is that you should have a plan of your progress; which indeed the students are
encouraged to have for their all studies, but when a change is due, responding to that should not
be hindered merely because of following the stages of plan. Simply it means whenever changes
to be done, those should be given more priority than the project plan. In this experiment as well
with the many other student activities, it is general to see that students do their development in
that nature to have error free code base for next stage developments.

Following these principles and full time pair programming, students of the selected 11 groups
completed their projects with meeting all the deadlines of the course. The next section describes
the results and their analysis.

RESULTS AND ANALYSIS

To maintain the project evaluation fairness, the author did not involve in any kind of evaluation of
the course, no evaluators were aware of this kind of study and they were asked to evaluate a
uniform sample of projects. At the end of the evaluations and the results of the students been

Using Agile Practice for Student Software Projects 93

finalized, the student grade distribution was as follows in the figure 2. Excellent project were with
A+ and A grades and good projects were obtained A- and B+ grades. The grades B and B- were
considered as satisfactory level and C+, C, and C- grades were on marginal pass range.

0

5

10

15

20

25

30

35

C- (1.5) C (2.0) C+ (2.3) B- (2.7) B (3.0) B+ (3.3) A- (3.7) A (4.0) A+ (4.2)

Grades with GPA

Number of Students

Figure 2: CS320 Grade distribution of the entire course (100 students)

The above mentioned grades were given on the basis of Continuous Assessment. Therefore, the
students have to obtain marks from various components. Also these components were weighted
as their relative importance to the objectives of the course module. Major areas of marking and
their average student marks for the students who practiced Agile principles and others are shown
in the following figure 3.

65.04

70.08 69.81

65.47

68.52
66.42

74.1

68.45
71.92

60.24

52.13

63.75

40

45

50

55

60

65

70

75

Fortnight
Reports

Other
Specifications

Mid Evaluation Program
Coding

Final Evaluation Final Project
Report

% Marks

Agile Practiced Students Mean (Marks %)

Other Students Mean (Marks %)

Figure 3: Mean marks for different components of the course between the Agile practiced
students and others

94 IJEDICT

If each of the marking components analyzed thoroughly, following explanations could be derived.
The Fortnight reports are as explained early, the most frequent deliverable that the students had
to produce. According to the genuine Agile practices, they encourage frequent deliverable; not
documents but working code, though. As in this research, to avoid any student risks of getting
low marks, the slightly altered approach of producing frequent deliverables, both working code
and relevant documentation in simple nature was helpful to Agile groups to score higher average
mark over the others. Also the examiners were much keen on to see good progress with project
through the Fortnight reports than other contents.

When Other Specifications are considered, it includes Requirement Specification, Design
Specification, Testing and Implementation Plan, and usability related documents such as User
Manual, Read Me texts, or Installation Guides. Agile practiced students average mark is 5.5%
less than that of the other students. Similar observation can be seen when consider the Final
Project Report marks too. This shows a significant issue with proper documentation by Agile
projects. It was anticipated at the beginning of the projects since the Agile principles do not
encourage any sophisticated documentations. Though the practiced approach was a combination
of documentation with coding and Agile students could score well in Fortnight Reports, when it
comes to the one time one type of lengthy documents they failed to keep their lead with others.
When the course module was completed, there was a discussion session with the Agile groups to
identify their concerns and feedback. Students describe their difficulty with producing detailed and
sophisticated specifications about their project. Their main concern was that they are highly
competent to explain their program code and its behaviour but not much the project parameters
like schedules, specifications and planning activities. This is a major finding with the Agile
practice to be used as a tool for teaching computer science.

On the other hand, for Program coding and Final Evaluations, Agile students scored average
marks of 6.33% and 5.65% respectively over than other students. For these components, quality
of the code, usability of the product, and achieving their project goals were mainly considered.
Agile practise shows a significant help to students to get higher marks. The most significant
observation was with the Mid Evaluation which was conducted 7 weeks after the commencement
of the project. At that time almost all the Agile projects were way ahead with program coding
compared to other students. The others were mainly focused too much on preparing
specifications and planning their future project activities, which is not a good sign for an industrial
software project that follows Rapid Development (RD). The mean marks deference is 12.91%
which is very significant difference when compared with other marks. However, at the Final
Evaluation this difference was reduced 5.65% with extra efforts by other students at the latter
weeks merely to complete their projects before the deadline. Because of that many students who
did not practice Agile methods have not got a sufficient time to consider usability aspects and fine
tuning of their products.

Marking components such as Presentations, Answering to questions, and Demonstrations were
not considered for this analysis as they do not shows stronger correlation with the experiment
conditions than a mere personal competence on soft skills.

The table 2 shows the final grades of the 22 students for the course module while indicating the
group skill variance before and after the course module. It is worth to mention that all the 11
projects were able to get either Excellent or Good grades at the end. The reason to use the skill
variance of the students between their partners is important to explain an outstanding observation
of from this study. As explained in the experiment information, only groups who had skill variance
between 0 to 0.75 GPA were used for the study, where the minimum skill variance in the sample
was 0.22 (Group 3) and the maximum skill variance was 0.73 (Group 7). When the projects were

Using Agile Practice for Student Software Projects 95

completed, by considering their individual grades for the course module, new skill variance was
derived. Interestingly, four groups out of the 11, showed 0 skill variance. The maximum skill
variance reported after the study was 0.5. The average skill variance before the study µ SVb =
0.508 and the average skill variance after the study µ SVa = 0.209, which is a clear indication of the
reduction of the skill gap of students. This effect is a promising feature of using Agile practices in
teaching computer programming which is perceived as a difficult learning area by students and
academia.

Group 1 2 3 4 5 6 7 8 9 10 11

Student 1
Module Results
Grade & GPA

A-
(3.7)

A
(4)

A-
(3.7)

A
(4)

A+
(4.2)

A
(4)

A
(4)

A+
(4)

A+
(4.2)

A
(4)

A
(4)

Student 2
Module Results
Grade & GPA

B+
(3.3)

A
(4)

A-
(3.7)

A-
(3.7)

A-
(3.7)

A
(4)

A-
(3.7)

A
(4)

A+
(4.2)

A-
(3.7)

A-
(3.7)

Skill Variance
Before 0.61 0.27 0.22 0.54 0.63 0.56 0.73 0.41 0.53 0.71 0.38

Skill Variance
After 0.4 0 0 0.3 0.5 0 0.3 0.2 0 0.3 0.3

Table 2: Agile Groups Students’ Individual Results for the Course with their Skill Variances before
& after

Furthermore, these students’ results were analyzed to examine their respective results growth
which is shown in the figure 4. The relative growth/decline was considered using the following
formula.

{(CS320 Course GPA – Cumulative GPA) / Cumulative GPA}*100%

All the obtained values are positive and hence shows growth for every student subjected to the
study. In this study the more competent students were named as student 1 in the groups and the
relatively weaker one as the student 2. According to the analysis student 2 in each group shows a
significant relative growth of their GPA for the course module against their group mates. The
growth range varies from 11.45% to 29.23% for the weaker students. On the other hand
competent students also reported reasonable growth of their GPA in the course module ranging
from 4.52% to 13.21%. This shows that the weaker students are the most benefited people from
the Agile practice. Of course it has a rational of sharing the knowledge which eventually reducing
the knowledge gap between the students as observed in the above. However, when the weaker
students to be equal or reasonably close with their stronger group mate’s skills, they have to
develop more skill level than that of the stronger student’s development. One could argue that
practicing Agile process makes the stronger students to hinder their skill development due to
helping their partners’ coding problems and becoming a burden to them. But that is not the truth
as most of the stronger students have reached to their maximum possible marks/grades they
could obtain from the course, i.e. A+ or A grades. And they came to those grades with having
reasonably near cumulative GPA values to those grades throughout their studies. Because of that
their relative growth percentage shows smaller values. However, its not possible to neglect the
fact that the weaker students’ programming skills could be significantly increased by allowing
them to practice pair programming, which is a really difficult task to achieve using the traditional
programming teaching methods, otherwise. Furthermore, Liu and Chan (2006) observed similar
outcomes where they found novices’ gain of knowledge is higher compared to experts’ gain.
Furthermore, it proves the accuracy of this research and the validity of the results, too.

96 IJEDICT

12

17.65

11.45

20.13

24.58

19.76

29.23

15.63

4.52

8.99

5.11

10.8
12.68 13.21 11.7311.11

8.11
8.4

27.5927.8

22.92

13.4

0

5

10

15

20

25

30

35

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9 Group 10 Group 11

% Growth

Student 1 Growth of GPA (%)
Student 2 Growth of GPA (%)

Figure 4: Agile practiced students’ course GPA growth respect to their cumulative GPA

A simple survey was done with the 22 students who practiced the Agile practice for their project.
The same survey was done before the study and after the study. In the survey, six questions were
asked with one of Yes, No, and Don’t Know options to be selected as the answer. The responses
are shown in the table 3 below.

 Questionnaire Statements

Before the Study After the Study

Yes No
Don’t
Know Yes No

Don't
Know

Agile Practice is Good for Projects 5 3 14 20 2 0
It Helps to Share Knowledge 11 5 6 22 0 0
I Can be a part of industrial Agile
Project Team 1 18 3 17 2 3
Recommends Agile Practice for Others 2 6 14 21 0 1
It Helps to Improve My Skills 2 5 15 22 0 0
It Helps to Raise My GPA 0 4 18 22 0 0

Table 3: Survey results about the student perception on using Agile Process for their studies.

The results show significant improvement of the students’ perception on the Agile practice once
they actually experienced it. In fact they are confident enough to accept their progress of results
and skill improvement, which invariably increased their confidence on the practice. Importantly
their confidence on being a member of an industrial Agile project team has increased largely.
That will allow them to work well during their internship term in the industry.

Using Agile Practice for Student Software Projects 97

Experimental Limitations and their impact

The experiment has the following limitations.

 The user skill variance - This is a common issue with human skill based experiments.
However, as described above, various methods were used to avoid any extreme cases
which can impact to the experiment significantly

 The project domain variance – This is yet another unavoidable concern with student
programming projects. Nevertheless, there was an expert steering committee to approve
the project proposals making those confined to the expected scope and work norms of the
course. Therefore it is justifiable to say the project domain variance did not impact
significantly, though the project differ each other.

 The project evaluator marking variance – Different evaluators and panels have marked
the students’ activities with slight differences of their marking. As the departmental practice
there is a normalization process to make all the marks into a uniform platform. In addition
to that the evaluation process ensured that any project should not be evaluated by the
same panel more than once. Therefore the impact was minimized.

 Academic constraints – Since the experiment environment was a live course module
there were many constraints with conflict of other courses that student took and other
academic constraints which reduce the opportunity of having an industry like coding
environment. However this impact was equally distributed among all the students.

When consider the entire analysis it can be summarized that the research results show important
outcomes, despite these trivial yet unavoidable limitations.

CONCLUSION

The research outcomes shows significant positive impact on the student learning process by
applying Agile practice for their programming works. This study took a different approach from the
rest of the Agile process based studies on student learning, by focusing more on the individual
student’s knowledge improvement through the practice. As shown above, not only the Agile
process helps to increase the students competencies on a relative difficult study area like
programming, but also it does help comparatively weaker students to have a better hope on their
learning without being burden to their groups. On the other hand it allows students to reach tiny
issues with programming as soon as they encounter them in their work, giving a more long lasting
learning experience.

There are some policy implications could be derived based on the research analyses and
findings. Importantly, the results stress the point that there is immense need of improvement of
teaching methods in computer science education, at least with the programming. Also, this
research shows a promising future for finding more attractive and user friendly approaches for
teaching programming, eliminating its technical difficulties many students experience. The author
expects and encourages other researchers and scholars to extend this research with possible
future studies. Also, it is a responsibility of all who involved in the education sector at policy
making level to identify and implement this kind of new approaches with rational research
evidences to improve the student learning experience. When that happens, all stakeholders in the
learning process will be undoubtedly benefited, while making the students to experience fruitful
education and a promising future.

98 IJEDICT

ACKNOWLEDGEMENT

The author is thankful for the students who participated in this study with their genuine
commitment to make this a success. Also the Department of Computer Science and Engineering
academic staff for participating in the project evaluation process and the non-academic staff who
helped on various laboratory and system issues that student came across while they were doing
their projects.

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J., 2002, “Agile software development
methods – Review and Analysis”, VTT Publications 478, p. 17.

Agile Manifesto, 2001, “Manifesto for agile software development”, [available at]
http://agilemanifesto.org/ , [accessed on 07th December 2008].

Alavi, M. 1994, “Computer-mediated collaborative learning: An empirical evaluation”, MIS
Quarterly 18, pp. 159–174.

Almstrum, V. L., Hazzon, O., Guzdzial, M., and Petre, M. 2005, “Challenges to computer science
education research”, In Proc. of the 36th SIGCSE Technical Symposium on Computer
Science Education SIGCSE ’05, ACM Press , pp.191-192.

Arntzen, J., Krug, D., & Wen, Z. (2008, December 30). “ICT literacies and the curricular
conundrum of calling all complex digital technologies Tools”. International Journal of
Education and Development using ICT [Online], 4(4). Available:
http://ijedict.dec.uwi.edu/viewarticle.php?id=571 [accessed on 11 th February 2009].

Arbelaiz, A. M. and Gorospe, J. M. C. 2009, “Can the grammar of schooling be changed?”,
Computers & Education , vol. 53, pp. 51–56

Bipp, T., Lepper, A., and Schmedding, D. 2008, “Pair programming in software development
teams – An empirical study of its benefits, Information and Software Technology, 50, pp.
231–240.

Birch, D., & Sankey, M. (2008, January 30). “Drivers For and Obstacles To the Development of
Interactive Multimodal Technology-Mediated Distance Higher Education Courses”.
International Journal of Education and Development using ICT [Online], 4(1). Available:
http://ijedict.dec.uwi.edu/viewarticle.php?id=375 . [accessed on 26 th January 2009].

Cohen, D., Lindvall, M., Costa, P. 2003, “A State of the Art Report: Agile Software Development”,
Data and Analysis Center for Software 775 Daedalian Dr. Rome, New York 13441- 4909, p.
01.

Covington, D., Petherbridge, D., & Egan Warren, S. 2005. “Best practices: A triangulated support
approach in transitioning academic to online teaching”, Online Journal of Distance
Learning Administration , vol. 8, no. 1. Available online at: http://www.westga.edu/
%7Edistance/ojdla/spring81/covington81.htm , [accessed 23 December 2008].

http://agilemanifesto.org/
http://ijedict.dec.uwi.edu/viewarticle.php?id=571

Using Agile Practice for Student Software Projects 99

Culp, K.M., Honey, M. and Mandinach, E. 2005, “A retrospective on twenty years of education
technology policy”, Journal of Educational Computing Research vol. 32 (3), pp. 279–307.

Dagnino, A., 2002, “An evolutionary life-cycle model with agile practices for software development
at ABB”. In Proc. on 8th IEEE Conference on Engineering of Complex Computer Systems
(ICECCS’02), pp. 215–223

Davis, E. A., Linn, M. C., and Clancy, M., 1995, “Learning to use parentheses and quotes in Lisp”,
Computer Science Education , vol. 6, pp. 15-31.

Dawson, R.J., Newsham, R.W. and Kerridge, R.S., 1992, “Introducing New Software Engineering
Graduates to the ‘Real World’ at the GPT Company”, Software Engineering Journal , vol.7
(3), pp. 171-176.

Domingue, J. and Mulholland, P., 1997, “Teaching Programming at a Distance: The Internet
Software Visualization Laboratory”, Journal of Interactive Media in Education , 97 (1), pp. 1-
31.

Earle, R.S., 2002, “The integration of instructional technology into public education: promises and
challenges”, Educational Technology Magazine , vol. 42, no. 1, pp. 5-13.

Gatfield, T. 1999, "Examining Student Satisfaction with Group Projects and Peer Assessment".
Assessment and Evaluation in Higher Education , Vol. 24(4), pp. 365-377.

Gunter, G. A. 2007, “The Effects of the Impact of Instructional Immediacy on Cognition and
Learning in Online Classes”, International Journal of Social Science , vol. 2 no. 3, pp. 196-
202.

Harden, R.M. and Crosby, J., 2000, “AMEE Guide No 20: The good teacher is more than a
lecturer-the twelve roles of the teacher”. Medical Teacher, vol. 22(4), pp. 334–347.

Highsmith, J., Cockburn, A., 2001, “Agile Software Development: The Business of Innovation”,
IEEE computer, vol. 34, pp.120-127.

Johnston, L, and Miles, L, 2004, “Assessing contributions to group assignments”, Assessment
and Evaluation in Higher Education , vol. 29 (6), pp. 751–768.

Kember, D., 1997, “A reconceptualisation of the research into university academics conceptions
of teaching”, Learning and Instruction , vol. 7(3), pp. 255–275.

Knight, C., Knight, B., & Teghe, D. (2006, May 31). Releasing the pedagogical power of
information and communication technology for learners: A case study. International Journal
of Education and Development using ICT [Online], 2(2). Available:
http://ijedict.dec.uwi.edu/viewarticle.php?id=167 [accessed on 03 rd April 2009].

Lui, K. M. and Chan, K. C. C. 2006, “Pair Programming Productivity: Novice-novice vs. expert-
expert”, International Journal of Human Computer Studies , vol. 64, pp. 915–925.

Mason, R., and Weller, M. 2000, “Factors affecting students’ satisfaction on a web course”,
Australian Journal of Education Technology , vol. 16(2), pp. 173-200.

http://ijedict.dec.uwi.edu/viewarticle.php?id=167

100 IJEDICT

McCarthy, B. and Hawking, P., 2002, “Teaching SAP’s ABAP Programming Language to IS
Students: Adopting and Adapting Web-based Technologies”, In Proc. of IS2002, pp. 995-
1000.

Perera G.I.U.S. 2009, “Key Success Factors for e-Learning Acceptability: A Case Based Analysis
on Blended Learning End-User Experience”, In Proc. of IEEE International Advance
Computing Conference, IACC’09 , pp. 2379-2384

Perera, G.I.U.S. and Fernando, M.S.D. 2007, “Bridging the gap – Business and information
systems: A roadmap”, In Proc. of 4th ICBM conference , pp. 334-343.

Perera, G.I.U.S. and Fernando, M.S.D. 2007, “Enhanced Agile Software Development — Hybrid
Paradigm with LEAN Practice, In Proc. of 2nd International Conference on Industrial and
Information Systems, ICIIS 2007, IEEE , pp. 239 – 244.

Perera, G.I.U.S. and Fernando, M.S.D. 2009, (In Press) “Rapid Decision Making for Post
Architectural Changes in Agile Development – A Guide to Reduce Uncertainty”,
International Journal of Information Technology and Knowledge Management, Serial
Publishers.

Rugarcia, A., Felder, R.M., Woods, D.R., and Stice, J.E. 2000, “The future of engineering
education. I. A vision for a new century”, Chemical Engineering Education , vol. 34 (1), pp.
16–25.

Vik, G.N. 2001, “Doing more to teach teamwork than telling students to sink or swim”, Business
Communication Quarterly, vol. 64 (4), pp. 112–119.

Williams, L., McDowell, C., Nagappan, N., Fernald, J., and Werner, L. 2003, “Building pair
programming knowledge through a family of experiments”, In Proc. of International
Symposium on Empirical Software Engineering, ISESE 2003, pp. 143-152

Williams, L., Yang, K., Wiebe, E., Ferzli, M., and Miller, C. 2002, “In Support of Pair Programming
in Introductory Computer Science Course”, Computer Science Education , vol. 12(3), pp.
197–202.

Copyright for articles published in this journal is retained by the authors, with first publication rights granted
to the journal. By virtue of their appearance in this open access journal, articles are free to use, with proper

attribution, in educational and other non-commercial settings.

Original article at: http://ijedict.dec.uwi.edu//viewarticle.php?id=755

http://ijedict.dec.uwi.edu//viewarticle.php?id=755

